L’Invention Mathématique

Draggable Bookmark

Henri Poincaré


The genesis of mathematical creation is a problem which should intensely interest the psychologist. It is the activity in which the human mind seems to take least from the outside world, in which it acts or seems to act only of itself and on itself, so that in studying the procedure of geometric thought we may hope to reach what is most essential in man’s mind.

This has long been appreciated, and some time back the journal called L’enseignement mathématique, edited by Laisant and Fehr, began an investigation of the mental habits and methods of work of different mathematicians. I had finished the main outlines of this article when the results of that inquiry were published, so I have hardly been able to utilize them and shall confine myself to saying that the majority of witnesses confirm my conclusions; I do not say all, for when the appeal is to universal suffrage unanimity is not to be hoped.

A first fact should surprise us, or rather would surprise us if we were not so used to it. How does it happen there are people who do not understand mathematics? If mathematics invokes only the rules of logic, such as are accepted by all normal minds; if its evidence is based on principles common to all men, and that none could deny without being mad, how does it come about that so many persons are here refractory?

That not every one can invent is nowise mysterious. That not every one can retain a demonstration once learned may also pass. But that not every one can understand mathematical reasoning when explained appears very surprising when we think of it. And yet those who can follow this reasoning only with difficulty are in the majority: that is undeniable, and will surely not be gainsaid by the experience of secondary school teachers.

And further: how is error possible in mathematics? A sane mind should not be guilty of a logical fallacy, and yet there are very fine minds who do not trip in brief reasoning such as occurs in the ordinary doings of life, and who are incapable of following or repeating without error the mathematical demonstrations which are longer, but which after all are only an accumulation of brief reasonings wholly analogous to those they make so easily. Need we add that mathematicians themselves are not infallible?

The answer seems to me evident. Imagine a long series of syllogisms, and that the conclusions of the first serve as premises of the following: we shall be able to catch each of these syllogisms, and it is not in passing from premises to conclusion that we are in danger of deceiving ourselves. But between the moment in which we first meet a proposition as conclusion of one syllogism, and that in which we reencounter it as premise of another syllogism occasionally some time will elapse, several links of the chain will have unrolled; so it may happen that we have forgotten it, or worse, that we have forgotten its meaning. So it may happen that we replace it by a slightly different proposition, or that, while retaining the same enunciation, we attribute to it a slightly different meaning, and thus it is that we are exposed to error.

Often the mathematician uses a rule. Naturally he begins by demonstrating this rule; and at the time when this proof is fresh in his memory he understands perfectly its meaning and its bearing, and he is in no danger of changing it. But subsequently he trusts his memory and afterwards only applies it in a mechanical way; and then if his memory fails him, he may apply it all wrong. Thus it is, to take a simple example, that we sometimes make slips in calculation because we have forgotten our multiplication table.

According to this, the special aptitude for mathematics would be due only to a very sure memory or to a prodigious force of attention. It would be a power like that of the whist player who remembers the cards played; or, to go up a step, like that of the chess-player who can visualize a great number of combinations and hold them in his memory. Every good mathematician ought to be a good chess-player, and inversely; likewise he should be a good computer. Of course that sometimes happens; thus Gauss was at the same time a geometer of genius and a very precocious and accurate computer.

But there are exceptions, or rather I err, I cannot call them exceptions without the exceptions being more than the rule. Gauss it is, on the contrary, who was an exception. As for myself, I must confess, I am absolutely incapable even of adding without mistakes. In the same way I should be but a poor chess-player; I would perceive that by a certain play I should expose myself to a certain danger; I would pass in review several other plays rejecting them for other reasons, and then finally I should make the move first examined, having meantime forgotten the danger I had foreseen.

In a word, my memory is not bad, but it would be insufficient to make me a good chess-player. Why then does it not fail me in a difficult piece of mathematical reasoning where most chess-players would lose themselves?

Evidently because it is guided by the general march of the reasoning. A mathematical demonstration is not a simple juxtaposition of syllogisms, it is syllogisms placed in a certain order, and the order in which these elements are placed is much more important than the elements themselves. If I have the feeling, the intuition, so to speak, of this order, so as to perceive at a glance the reasoning as a whole, I need no longer fear lest I forget one of the elements, for each of them will take its allotted place in the array, and that without any effort of memory on my part.

It seems to me then, in repeating a reasoning learned, that I could have invented it. This is often only an illusion; but even then, even if I am not so gifted as to create it by myself, I myself re-invent it in so far as I repeat it.

We know that this feeling, this intuition of mathematical order, that makes us divine hidden harmonies and relations, cannot be possessed by every one. Some will not have either this delicate feeling so difficult to define, or a strength of memory and attention beyond the ordinary, and then they will be absolutely incapable of understanding higher mathematics. Such are the majority. Others will have this feeling only in a slight degree, but they will be gifted with an uncommon memory and a great power of attention. They will learn by heart the details one after another; they can understand mathematics and sometimes make applications, but they cannot create. Others, finally, will possess in a less or greater degree the special intuition referred to, and then not only can they understand mathematics even if their memory is nothing extraordinary, but they may become creators and try to invent with more or less success according as this intuition is more or less developed in them.

In fact what is mathematical creation? It does not consist in making new combinations with mathematical entities already known. Any one could do that, but the combinations so made would be infinite in number and most of them absolutely without interest. To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority. Invention is discernment, choice.

How to make this choice I have before explained; the mathematical facts worthy of being studied are those which, by their analogy with other facts, are capable of leading us to the knowledge of a mathematical law just as experimental facts lead us to the knowledge of a physical law. They are those which reveal to us unsuspected kinship between other facts, long known, but wrongly believed to be strangers to one another.

Among chosen combinations the most fertile will often be those formed of elements drawn from domains which are far apart. Not that I mean as sufficing for invention the bringing together of objects as disparate as possible; most combinations so formed would be entirely sterile. But certain among them, very rare, are the most fruitful of all.

To invent, I have said, is to choose; but the word is perhaps not wholly exact. It makes one think of a purchaser before whom are displayed a large number of samples, and who examines them, one after the other to make a choice. Here the samples would be so numerous that a whole lifetime would not suffice to examine them. This is not the actual state of things. The sterile combinations do not even present themselves to the mind of the inventor. Never in the field of his consciousness do combinations appear that are not really useful, except some that he rejects but which have to some extent the characteristics of useful combinations. All goes on as if the inventor were an examiner for the second degree who would only have to question the candidates who had passed a previous examination.

But what I have hitherto said is what may be observed or inferred in reading the writings of the geometers, reading reflectively.

It is time to penetrate deeper and to see what goes on in the very soul of the mathematician. For this. I believe, I can do best by recalling memories of my own. But I shall limit myself to telling how I wrote my first memoir on Fuchsian functions. I beg the reader’s pardon; I am about to use some technical expressions, but they need not frighten him, for he is not obliged to understand them. I shall say, for example, that I have found the demonstration of such a theorem under such circumstances. This theorem will have a barbarous name, unfamiliar to many, but that is unimportant; what is of interest for the psychologist is not the theorem but the circumstances.

For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions. I was then very ignorant; every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no result. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a class of Fuchsian functions, those which come from the hypergeometric series; I had only to write out the results, which took but a few hours.

Then I wanted to represent these functions by the quotient of two series; this idea was perfectly conscious and deliberate, the analogy with elliptic functions guided me. I asked myself what properties these series must have if they existed, and I succeeded without difficulty in forming the series I have called theta-Fuchsian.

Just at this time I left Caen, where I was then living, to go on a geologic excursion under the auspices of the School of Mines. The changes of travel made me forget my mathematical work. Having reached Coutances we entered an omnibus to go some place or other. At the moment when I put my foot on the step the idea came to me without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had time, as upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’ sake I verified the result at my leisure.

Then I turned my attention to the study of some arithmetical questions apparently without much success and without a suspicion of any connection with my preceding researches. Disgusted with my failure, I went to spend a few days at the seaside, and thought of something else. One morning, walking on the bluff, the idea came to me, with just the same characteristics of brevity, suddenness, and immediate certainty, that the arithmetic transformations of indeterminate ternary quadratic forms were identical with those of non-Euclidean geometry.

Returned to Caen, I meditated on this result and deduced the consequences. The example of quadratic forms showed me that there were Fuchsian groups other than those corresponding to the hypergeometric series; I saw that I could apply to them the theory of theta-Fuchsian series and that consequently there existed Fuchsian functions other than those from the hypergeometric series, the only ones I then knew. Naturally I set myself to form all these functions. I made a systematic attack upon them and carried all the outworks, one after another. There was one however that still held out, whose fall would involve that of the whole place. But all my efforts only served at first the better to show me the difficulty, which indeed was something. All this work was perfectly conscious.

Thereupon I left for Mont-Valérien where I was to go through my military service; so I was very differently occupied. One day, going along the street, the solution of the difficulty which had stopped me, suddenly appeared to me. I did not try to go deep into it immediately, and only after my service did I again take up the question. I had all the elements and had only to arrange them and put them together. So I wrote out my final memoir at a single stroke and without difficulty.

I shall limit myself to this single example; it is useless to multiply them. In regard to my other researches I would have to say analogous things, and the observations of other mathematicians given in L’enseignement mathématique would only confirm them.

Most striking at first is this appearance of sudden illumination, a manifest sign of long, unconscious prior work. The role of this unconscious work in mathematical invention appears to me incontestable, and traces of it would be found in other cases where it is less evident. Often when one works at a hard question, nothing good is accomplished at the first attack. Then one takes a rest, longer or shorter, and sits down anew to the work. During the first halfhour, as before, nothing is found, and then all of a sudden the decisive idea presents itself to the mind. It might be said that the conscious work has been more fruitful because it has been interrupted and the rest has given back to the mind its force and freshness. But it is more probable that this rest has been filled out with unconscious work and that the result of this work has afterward revealed itself to the geometer just as in the cases I have cited; only the revelation instead of coming during a walk or a journey, has happened during a period of conscious work, but independently of this work which plays at most a rôle of excitant, as if it were the goad stimulating the results already reached during rest, but remaining unconscious, to assume the conscious form.

There is another remark to be made about the conditions of this unconscious work: it is possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the other hand followed by a period of conscious work. These sudden inspirations (and the examples already cited sufficiently prove this) never happen except after some days of voluntary effort which has appeared absolutely fruitless and whence nothing good seems to have come, where the way taken seems totally astray. These efforts then have not been as sterile as one thinks; they have set agoing the unconscious machine, and without them it would not have moved and would have produced nothing.

The need for the second period of conscious work, after the inspiration, is still easier to understand. It is necessary to put in shape the results of this inspiration, to deduce from them the immediate consequences, to arrange them, to word the demonstrations, but above all is verification necessary. I have spoken of the feeling of absolute certitude accompanying the inspiration; in the cases cited this feeling was no deceiver, nor is it usually. But do not think this a rule without exception; often this feeling deceives us without being any the less vivid, and we only find it out when we seek to put on foot the demonstration. I have especially noticed this fact in regard to ideas coming to me in the morning or evening in bed while in a semihypnagogic state.

Such are the realities; now for the thoughts they force upon us. The unconscious, or, as we say, the subliminal self plays an important role in mathematical creation; this follows from what we have said. But usually the subliminal self is considered as purely automatic. Now we have seen that mathematical work is not simply mechanical, that it could not be done by a machine however perfect. It is not merely a question of applying rules, of making the most combinations possible according to certain fixed laws. The combinations so obtained would be exceedingly numerous, useless, and cumbersome. The true work of the inventor consists in choosing among these combinations so as to eliminate the useless ones or rather to avoid the trouble of making them, and the rules which must guide this choice are extremely fine and delicate. It is almost impossible to state them precisely; they are felt rather than formulated. Under these conditions, how imagine a sieve capable of applying them mechanically?

A first hypothesis now presents itself: the subliminal self is in no way inferior to the conscious self; it is not purely automatic; it is capable of discernment; it has tact, delicacy; it knows how to choose, to divine. What do I say? It knows better how to divine than the conscious self, since it succeeds where that has failed. In a word, is not the subliminal self superior to the conscious self? You recognize the full importance of this question. Boutroux, in a recent lecture, has shown how it came up on a very different occasion, and what consequences would follow an affirmative answer. (See also, by the same author, Science et Religion, pp. 313 ff.)

Is this affirmative answer forced upon us by the facts I have just given? I confess that, for my part, I should hate to accept it. Reexamine the facts then and see if they are not compatible with another explanation.

It is certain that the combinations which present themselves to the mind in a sort of sudden illumination, after an unconscious working somewhat prolonged, are generally useful and fertile combinations, which seem the result of a first impression. Does it follow that the subliminal self, having divined by a delicate intuition that these combinations would be useful, has formed only these, or has it rather formed many others which were lacking in interest and have remained unconscious?

In this second way of looking at it, all the combinations would be formed in consequence of the automatism of the subliminal self, but only the interesting ones would break into the domain of consciousness. And this is still very mysterious. What is the cause that, among the thousand products of our unconscious activity, some are called to pass the threshold, while others remain below? Is it a simple chance which confers this privilege? Evidently not; among all the stimuli of our senses, for example, only the most intense fix our attention, unless it has been drawn to them by other causes. More generally, the privileged unconscious phenomena, those susceptible of becoming conscious, are those which, directly or indirectly, affect most profoundly our emotional sensibility.

It may be surprising to see emotional sensibility invoked à propos of mathematical demonstrations which, it would seem, can interest only the intellect. This would be to forget the feeling of mathematical beauty, of the harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling that all real mathematicians know, and surely it belongs to emotional sensibility.

Now, what are the mathematic entities to which we attribute this character of beauty and elegance, and which are capable of developing in us a sort of esthetic emotion? They are those whose elements are harmoniously disposed so that the mind without effort can embrace their totality while realizing the details. This harmony is at once a satisfaction of our esthetic needs and an aid to the mind, sustaining and guiding. And at the same time, in putting under our eyes a well-ordered whole, it makes us foresee a mathematical law. Now, as we have said above, the only mathematical facts worthy of fixing our attention and capable of being useful, are those which can teach us a mathematical law. So that we reach the following conclusion: The useful combinations are precisely the most beautiful, I mean those best able to charm this special sensibility that all mathematicians know, but of which the profane are so ignorant as often to be tempted to smile at it.

What happens then? Among the great numbers of combinations blindly formed by the subliminal self, almost all are without interest and without utility; but just for that reason they are also without effect upon the esthetic sensibility. Consciousness will never know them; only certain ones are harmonious, and consequently, at once useful and beautiful. They will be capable of touching this special sensibility of the geometer, of which I have just spoken, and which, once aroused, will call our attention to them, and thus give them occasion to become conscious.

This is only a hypothesis, and yet here is an observation which may confirm it: when a sudden illumination seizes upon the mind of the mathematician, it usually happens that it does not deceive him, but it also sometimes happens, as I have said, that it does not stand the test of verification; well, we almost always notice that this false idea, had it been true, would have gratified our natural feeling for mathematical elegance.

Thus it is this special esthetic sensibility, which plays the role of the delicate sieve of which I spoke, and that sufficiently explains why the one lacking it will never be a real creator.

Yet all the difficulties have not disappeared. The conscious self is narrowly limited, and as for the subliminal self we know not its limitations, and this is why we are not too reluctant in supposing that it has been able in a short time to make more different combinations than the whole life of a conscious being could encompass. Yet these limitations exist. Is it likely that it is able to form all the possible combinations, whose number would frighten the imagination? Nevertheless that would seem necessary, because if it produces only a small part of these combinations, and if it makes them at random, there would be small chance that the good, the one we should choose, would be found among them.

Perhaps we ought to seek the explanation in that preliminary period of conscious work which always precedes all fruitful unconscious labor. Permit me a rough comparison. Figure the future elements of our combinations as something like the hooked atoms of Epicurus. During the complete repose of the mind, these atoms are motionless, they are, so to speak, hooked to the wall; so this complete rest may be indefinitely prolonged without the atoms meeting, and consequently without any combination between them.

On the other hand, during a period of apparent rest and unconscious work, certain of them are detached from the wall and put in motion. They flash in every direction through the space (I was about to say the room) where they are enclosed, as would, for example, a swarm of gnats or, if you prefer a more learned comparison, like the molecules of gas in the kinematic theory of gases. Then their mutual impacts may produce new combinations.

What is the role of the preliminary conscious work? It is evidently to mobilize certain of these atoms, to unhook them from the wall and put them in swing. We think we have done no good, because we have moved these elements a thousand different ways in seeking to assemble them and have found no satisfactory aggregate. But, after this shaking up imposed upon them by our will, these atoms do not return to their primitive rest. They freely continue their dance.

Now, our will did not choose them at random; it pursued a perfectly determined aim. The mobilized atoms are therefore not any atoms whatsoever; they are those from which we might reasonably expect the desired solution. Then the mobilized atoms undergo impacts which make them enter into combination among themselves or with other atoms at rest which they struck against in their course. Again, I beg pardon, my comparison is very rough, but I scarcely know how otherwise to make my thought understood.

However it may be, the only combinations that have a chance of forming are those where at least one of the elements is one of those atoms freely chosen by our will. Now, it is evidently among these that is found what I called the good combination. Perhaps this is a way of lessening the paradoxical in the original hypothesis.

Another observation. It never happens that the unconscious work gives us the result of a somewhat long calculation all made, where we have only to apply fixed rules. We might think the wholly automatic subliminal self particularly apt for this sort of work, which is in a way exclusively mechanical. It seems that thinking in the evening upon the factors of a multiplication, we might hope to find the product ready made upon our awakening, or again that an algebraic calculation, for example a verification, would be made unconsciously. Nothing of the sort, as observation proves. All one may hope from these inspirations, fruits of unconscious work, is a point of departure for such calculations. As for the calculations themselves, they must be made in the second period of conscious work, that which follows the inspiration, that in which one verifies the results of this inspiration, and deduces their consequences. The rules of these calculations are strict and complicated. They require discipline, attention, will, and therefore consciousness. In the subliminal self, on the contrary, reigns what I should call liberty, if we might give this name to the simple absence of discipline and to the disorder born of chance. Only, this disorder itself permits unexpected combinations.

I shall make a last remark: when above I made certain personal observations, I spoke of a night of excitement when I worked in spite of myself. Such cases are frequent, and it is not necessary that the abnormal cerebral activity be caused by a physical excitant as in that I mentioned. It seems in such cases, that one is present at his own unconscious work, made partially perceptible to the over-excited consciousness, yet without having changed its nature. Then we vaguely comprehend what distinguishes the two mechanisms or, if you wish, the working methods of the two egos. And the psychologic observations I have been able thus to make seem to me to confirm in their general outlines the views I have given.

Surely they have need of it, for they are and remain in spite of all very hypothetical: the interest of the question is so great that I do not repent of having submitted them to the reader.

La genèse de l’Invention mathématique est un problème qui doit inspirer le plus vif intérêt au psychologue. C’est l’acte dans lequel l’esprit humain semble le moins emprunter au monde extérieur, où il n’agit ou ne paraît agir que par lui-même et sur lui-même, de sorte, qu’en étudiant le processus de la pensée géométrique, c’est ce qu’il y a de plus essentiel dans l’esprit humain que nous pouvons espérer atteindre.

On l’a compris depuis longtemps, et il y a quelques mois une revue intitulée L’Enseignement Mathématique et dirigée par MM. Laisant et Fehr a entrepris une enquête sur les habitudes d’esprit et les méthodes de travail des différents mathématiciens. J’avais arrêté les principaux traits de ma conférence, quand les résultats de cette enquête ont été publiés; je n’ai donc guère pu les utiliser, je me bornerai à dire que la majorité des témoignages confirment mes conclusions; je ne dis pas l’unanimité, car quand on consulte le suffrage universel, on ne peut se flatter de réunir l’unanimité.

Un premier fait doit nous étonner, ou plutôt devrait nous étonner, si nous n’y étions si habitués. Comment se fait-il qu’il y ait des gens qui ne comprennent pas les mathématiques? Si les mathématiques n’invoquent que les règles de la logique, celles qui sont acceptées par tous les esprits bien faits; si leur évidence est fondée sur des principes qui sont communs à tous les hommes et que nul ne saurait nier sans être fou, comment se fait-il qu’il y ait tant de personnes qui y soient totalement réfractaires?

Que tout le monde ne soit pas capable d’invention, cela n’a rien de mystérieux. Que tout le monde ne puisse retenir une démonstration qu’il a apprise autrefois, passe encore. Mais que tout le monde ne puisse pas comprendre un raisonnement mathématique au moment où on le lui expose, voilà qui paraît bien surprenant quand on y réfléchit. Et pourtant ceux qui ne peuvent suivre ce raisonnement qu’avec peine sont en majorité; cela est incontestable et l’expérience des maîtres de l’enseignement secondaire ne me contredira certes pas.

Et il y a plus; comment l’erreur est-elle possible en mathématiques? Une intelligence saine ne doit pas commettre de faute de logique, et cependant il y a des esprits très fins, qui ne broncheront pas dans un raisonnement court tel que ceux que l’on a à faire dans les actes ordinaires de la vie, et qui sont incapables de suivre ou de répéter sans erreur les démonstrations des mathématiques qui sont plus longues, mais qui ne sont après tout qu’une accumulation de petits raisonnements tout à fait analogues à ceux qu’ils font si facilement. Est-il nécessaire d’ajouter que les bons mathématiciens eux-mêmes ne sont pas infaillibles?

La réponse me semble s’imposer. Imaginons une longue série de syllogismes, et que les conclusions des premiers servent de prémisses aux suivants; nous serons capables de saisir chacun de ces syllogismes, et ce n’est pas dans le passage des prémisses à la conclusion que nous risquons de nous tromper. Mais entre le moment où nous rencontrons pour la première fois une proposition, comme conclusion d’un syllogisme, et celui où nous la retrouvons comme prémisse d’un autre syllogisme, il se sera écoulé parfois beaucoup de temps, on aura déroulé de nombreux anneaux de la chaîne; il peut donc arriver qu’on l’ait oubliée, ou ce qui est plus grave, qu’on en ait oublié le sens. Il peut donc se faire qu’on la remplace par une proposition un peu différente, ou que tout en conservant le même énoncé, on lui attribue un sens un peu différent, et c’est ainsi qu’on est exposé à l’erreur.

Souvent le mathématicien doit se servir d’une règle; naturellement il a commencé par démontrer cette règle; et au moment où cette démonstration était toute fraîche dans son souvenir il en comprenait parfaitement le sens et la portée, et il ne risquait pas de l’altérer. Mais ensuite il l’a confiée à sa mémoire et il ne l’applique plus que d’une façon mécanique; et alors si la mémoire lui fait défaut, il peut l’appliquer tout de travers. C’est ainsi, pour prendre un exemple simple et presque vulgaire, que nous faisons quelquefois des fautes de calcul parce que nous avons oublié notre table de multiplication.

À ce compte, l’aptitude spéciale aux mathématiques ne serait due qu’à une mémoire très sûre, ou bien à une force d’attention prodigieuse. Ce serait une qualité analogue à celle du joueur de whist, qui retient les cartes tombées; ou bien pour nous élever d’un degré, à celle du joueur d’échecs qui peut envisager un nombre très grand de combinaisons et les garder dans sa mémoire. Tout bon mathématicien devrait être en même temps bon joueur d’échecs, et inversement; il devrait être également un bon calculateur numérique. Certes cela arrive quelquefois, ainsi Gauss était à la fois un géomètre de génie et un calculateur très précoce et très sûr.

Mais il y a des exceptions, ou plutôt je me trompe, je ne puis pas appeler cela des exceptions, sans quoi les exceptions seraient plus nombreuses que les cas conformes à la règle. C’est Gauss, au contraire, qui était une exception. Quant à moi, je suis obligé de l’avouer, je suis absolument incapable de faire une addition sans faute. Je serais également un fort mauvais joueur d’échecs; je calculerais bien qu’en jouant de telle façon, je m’expose à tel danger; je passerais en revue beaucoup d’autres coups que je rejetterais pour d’autres raisons, et je finirais par jouer le coup d’abord examiné, ayant oublié dans l’intervalle le danger que j’avais prévu.

En un mot ma mémoire n’est pas mauvaise, mais elle serait insuffisante pour faire de moi un bon joueur d’échecs. Pourquoi donc ne me fait-elle pas défaut dans un raisonnement mathématique difficile où la plupart des joueurs d’échecs se perdraient. C’est évidemment parce qu’elle est guidée par la marche générale du raisonnement. Une démonstration mathématique n’est pas une simple juxtaposition de syllogismes, ce sont des syllogismes placés dans un certain ordre, et l’ordre dans lequel ces éléments sont placés est beaucoup plus important que ne le sont ces éléments eux-mêmes. Si j’ai le sentiment, l’intuition pour ainsi dire de cet ordre, de façon à apercevoir d’un coup d’œil l’ensemble du raisonnement, je ne dois plus craindre d’oublier l’un des éléments, chacun d’eux viendra se placer de lui-même dans le cadre qui lui est préparé, et sans que j’aie à faire aucun effort de mémoire.

Il me semble alors, en répétant un raisonnement appris, que j’aurais pu l’inventer; ou plutôt, même si cela est une illusion, si je ne suis pas assez fort pour créer pour moi-même, je le réinvente moi-même, à mesure que je le répète.

On conçoit que ce sentiment, cette intuition de l’ordre mathématique, qui nous fait deviner des harmonies et des relations cachées, ne puisse appartenir à tout le monde. Les uns ne posséderont ni ce sentiment délicat, et difficile à définir, ni une force de mémoire et d’attention au-dessus de l’ordinaire, et alors ils seront absolument incapables de comprendre les mathématiques un peu élevées; c’est le plus grand nombre. D’autres n’auront ce sentiment qu’à un faible degré, mais ils seront doués d’une mémoire peu commune et d’une grande capacité d’attention. Ils apprendront par cœur les détails les uns après les autres, ils pourront comprendre les mathématiques et quelquefois les appliquer, mais ils seront hors d’état de créer. Les autres enfin posséderont à un plus ou moins haut degré l’intuition spéciale dont je viens de parler et alors non seulement, ils pourront comprendre les mathématiques, quand même leur mémoire n’aurait rien d’extraordinaire, mais ils pourront devenir créateurs et chercher à inventer avec plus ou moins de succès, suivant que cette intuition est chez eux plus ou moins développée.

Qu’est-ce, en effet, que l’invention mathématique? Elle ne consiste pas à faire de nouvelles combinaisons avec des êtres mathématiques déjà connus. Cela, n’importe qui pourrait le faire, mais les combinaisons que l’on pourrait faire ainsi seraient en nombre fini, et le plus grand nombre est absolument dépourvu d’intérêt. Inventer, cela consiste précisément à ne pas construire les combinaisons inutiles et à construire celles qui sont utiles et qui ne sont qu’une infime minorité. Inventer, c’est discerner, c’est choisir.

Comment doit se faire ce choix, je l’ai expliqué ailleurs; les faits mathématiques dignes d’être étudiés, ce sont ceux qui, par leur analogie avec d’autres faits, sont susceptibles de nous conduire à la connaissance d’une loi mathématique de la même façon que les faits expérimentaux nous conduisent à la connaissance d’une loi physique. Ce sont ceux qui nous révèlent des parentés insoupçonnées entre d’autres faits, connus depuis longtemps, mais qu’on croyait à tort étrangers les uns aux autres.

Parmi les combinaisons que l’on choisira, les plus fécondes seront souvent celles qui sont formées d’éléments empruntés à des domaines très éloignés; et je ne veux pas dire qu’il suffise pour inventer de rapprocher des objets aussi disparates que possible; la plupart des combinaisons qu’on formerait ainsi seraient entièrement stériles; mais quelques unes d’entre elles, bien rares, sont les plus fécondes de toutes.

Inventer, je l’ai dit, c’est choisir; mais le mot n’est peut-être pas tout à fait juste, il fait penser à un acheteur à qui on présente un grand nombre d’échantillons qui les examine l’un après l’autre de façon à faire son choix. Ici les échantillons seraient tellement nombreux qu’une vie entière ne suffirait pas pour les examiner. Ce n’est pas ainsi que les choses se passent. Les combinaisons stériles ne se présenteront même pas à l’esprit de l’inventeur. Dans le champ de sa conscience n’apparaîtront jamais que les combinaisons réellement utiles, et quelques autres qu’il rejettera, mais qui participent un peu des caractères des combinaisons utiles. Tout se passe comme si l’inventeur était un examinateur du deuxième degré qui n’aurait plus à interroger que les candidats déclarés admissibles après une première épreuve.

Mais ce que j’ai dit jusqu’ici, c’est ce qu’on peut observer ou inférer, en lisant les écrits des géomètres à la condition de faire cette lecture avec quelque réflexion.

Il est temps de pénétrer plus avant et de voir ce qui se passe dans l’âme même du mathématicien. Pour cela, je crois que ce que j’ai de mieux à faire, c’est de rappeler des souvenirs personnels. Seulement je vais me circonscrire et vous raconter seulement comment j’ai écrit mon premier mémoire sur les fonctions fuchsiennes. Je vous demande pardon, je vais employer quelques expressions techniques; mais elles ne doivent pas vous effrayer, vous n’avez aucun besoin de les comprendre. Je dirai, par exemple, j’ai trouvé la démonstration de tel théorème dans telles circonstances, ce théorème aura un nom barbare, que beaucoup d’entre vous ne connaîtront pas, mais cela n’a aucune importance; ce qui est intéressant pour le psychologue, ce n’est pas le théorème, ce sont les circonstances.

Depuis quinze jours je m’efforçais de démontrer qu’il ne pouvait exister aucune fonction analogue à ce que j’ai appelé depuis les fonctions fuchsiennes; j’étais alors fort ignorant; tous les jours, je m’asseyais à ma table de travail, j’y passais une heure ou deux, j’essayais un grand nombre de combinaisons et je n’arrivais à aucun résultat. Un soir, je pris du café noir, contrairement à mon habitude, je ne pus m’endormir: les idées surgissaient en foule; je les sentais comme se heurter, jusqu’à ce que deux d’entre elles s’accrochassent pour ainsi dire pour former une combinaison stable. Le matin, J’avais établi l’existence d’une classe de fonctions fuchsiennes, celles qui dérivent de la série hypergéométrique; je n’eus plus qu’à rédiger les résultats, ce qui ne me prit que quelques heures.

Je voulus ensuite représenter ces fonctions par le quotient de deux séries; cette idée fut parfaitement consciente et réfléchie; l’analogie avec les fonctions elliptiques me guidait. Je me demandai quelles devaient être les propriétés de ces séries si elles existaient, et j’arrivai sans difficulté à former les séries que j’ai appelées thétafuchsiennes.

À ce moment, je quittai Caen, que j’habitais alors, pour prendre part à une course géologique entreprise par l’École des Mines. Les péripéties du voyage me firent oublier mes travaux mathématiques; arrivés à Coutances, nous montâmes dans un omnibus pour je ne sais quelle promenade; au moment où je mettais le pied sur le marche-pied, l’idée me vint, sans que rien dans mes pensées antérieures parût m’y avoir préparé, que les transformations dont j’avais fait usage pour définir les fonctions fuchsiennes étaient identiques à celles de la géométrie non euclidienne. Je ne fis pas la vérification; je n’en aurais pas eu le temps puisque, à peine assis dans l’omnibus, je repris la conversation commencée, mais j’eus tout de suite une entière certitude. De retour à Caen, je vérifiai le résultat à tête reposée pour l’acquit de ma conscience.

Je me mis alors à étudier des questions d’arithmétique sans grand résultat apparent et sans soupçonner que cela pût avoir le moindre rapport avec mes recherches antérieures. Dégoûté de mon insuccès, j’allai passer quelques jours au bord de la mer, et je pensai à tout autre chose. Un jour, en me promenant sur une falaise, l’idée me vint, toujours avec les mêmes caractères de brièveté, de soudaineté et de certitude immédiate, que les transformations arithmétiques des formes quadratiques ternaires indéfinies étaient identiques à celles de la géométrie non euclidienne.

Étant revenu à Caen, je réfléchis sur ce résultat; et j’en tirai les conséquences; l’exemple des formes quadratiques me montrait qu’il y avait des groupes fuchsiens autres que ceux qui correspondent à la série hypergéométrique; je vis que je pouvais leur appliquer la théorie des séries thétafuchsiennes et que par conséquent il existait des fonctions fuchsiennes autres que celles qui dérivent de la série hypergéométrique, les seules que je connusse jusqu’alors. Je me proposai naturellement de former toutes ces fonctions; j’en fis un siège systématique et j’enlevai l’un après l’autre tous les ouvrages avancés; il y en avait un cependant qui tenait encore et dont la chute devait entraîner celle du corps de place. Mais tous mes efforts ne servirent d’abord qu’à me mieux faire connaître la difficulté, ce qui était déjà quelque chose. Tout ce travail fut parfaitement conscient.

Là-dessus je partis pour le Mont Valérien où je devais faire mon service militaire; j’eus donc des préoccupations très différentes. Un jour, en traversant le boulevard, la solution de la difficulté qui m’avait arrêté m’apparut tout à coup. Je ne cherchai pas à l’approfondir immédiatement, et ce fut seulement après mon service que je repris la question. J’avais tous les éléments, je n’avais qu’à les rassembler et à les ordonner. Je rédigeai donc mon mémoire définitif d’un trait et sans aucune peine.

Je me bornerai à cet exemple unique, il est inutile de les multiplier; en ce qui concerne mes autres recherches, j’aurais à vous faire des récits tout à fait analogues; et les observations rapportées par d’autres mathématiciens dans l’enquête de l’Enseignement Mathématique ne pourraient que les confirmer.

Ce qui vous frappera tout d’abord ce sont ces apparences d’illumination subite, signes manifestes d’un long travail inconscient antérieur; le rôle de ce travail inconscient dans l’invention mathématique me paraît incontestable, et on en trouverait des traces dans d’autres cas où il est moins évident. Souvent quand on travaille une question difficile, on ne fait rien de bon la première fois qu’on se met à la besogne; ensuite on prend un repos plus ou moins long, et on s’assoit de nouveau devant sa table. Pendant la première demi-heure on continue à ne rien trouver et puis tout à coup l’idée décisive se présente à l’esprit. On pourrait dire que le travail conscient a été plus fructueux parce qu’il a été interrompu et que le repos a rendu à l’esprit sa force et sa fraîcheur. Mais il est plus probable que ce repos a été rempli par un travail inconscient, et que le résultat de ce travail s’est révélé ensuite au géomètre, tout à fait comme dans les cas que j’ai cités; seulement la révélation, au lieu de se faire jour pendant une promenade ou un voyage, s’est produite pendant une période de travail conscient, mais indépendamment de ce travail qui joue tout au plus un rôle de déclenchement; comme s’il était l’aiguillon qui aurait excité les résultats déjà acquis pendant le repos mais restés inconscients à revêtir la forme consciente.

Il y a une autre remarque à faire au sujet des conditions de ce travail inconscient; c’est qu’il n’est possible et en tout cas qu’il n’est fécond que s’il est d’une part précédé, et d’autre part suivi d’une période de travail conscient. Jamais (et les exemples que je vous ai cités le prouvent déjà suffisamment) ces inspirations subites ne se produisent qu’après quelques jours d’efforts volontaires, qui ont paru absolument infructueux et où l’on a cru ne rien faire de bon, où il semble qu’on a fait totalement fausse route. Ces efforts n’ont donc pas été aussi stériles qu’on le pense, ils ont mis en branle la machine inconsciente et sans eux elle n’aurait pas marché et elle n’aurait rien produit.

La nécessité de la seconde période de travail conscient, après l’inspiration, se comprend mieux encore. Il faut mettre en œuvre les résultats de cette inspiration, en déduire les conséquences immédiates, les ordonner, rédiger les démonstrations. Mais surtout il faut les vérifier. Je vous ai parlé du sentiment de certitude absolue qui accompagne l’inspiration; dans les cas cités, ce sentiment n’était pas trompeur, et le plus souvent il en est ainsi; mais il faut se garder de croire que ce soit une règle sans exception; souvent ce sentiment nous trompe sans pour cela être moins vif et on ne s’en aperçoit que quand on cherche à mettre la démonstration sur pied. J’ai observé surtout le fait pour les idées qui me sont venues le matin ou le soir dans mon lit, dans un état semi-hypnagogique.

Tels sont les faits, et voici maintenant les réflexions qu’ils nous imposent. Le moi inconscient, ou comme on dit le moi subliminal joue un rôle capital dans l’invention mathématique, cela résulte de tout ce qui précède. Mais on considère d’ordinaire le moi subliminal comme purement automatique. Or nous avons vu que le travail mathématique n’est pas un simple travail mécanique, qu’on ne saurait le confier à une machine, quelque perfectionnée qu’on la suppose. Il ne s’agit pas seulement d’appliquer des règles, de fabriquer le plus de combinaisons possibles d’après certaines lois fixes. Les combinaisons ainsi obtenues seraient extrêmement nombreuses, inutiles et encombrantes. Le véritable travail de l’inventeur consiste à choisir entre ces combinaisons, de façon à éliminer celles qui sont inutiles ou plutôt à ne pas se donner la peine de les faire. Et les règles qui doivent guider ce choix sont extrêmement fines et délicates, il est à peu près impossible de les énoncer dans un langage précis; elles se sentent plutôt qu’elles ne se formulent; comment dans ces conditions imaginer un crible capable de les appliquer mécaniquement?

Et alors une première hypothèse se présente à nous; le moi subliminal n’est nullement inférieur au moi conscient; il n’est pas purement automatique, il est capable de discernement, il a du tact, de la délicatesse; il sait choisir, il sait deviner. Que dis-je? Il sait mieux deviner que le moi conscient, puisqu’il réussit là où celui-ci avait échoué. En un mot le moi subliminal n’est-il pas supérieur au moi conscient? Vous comprenez toute l’importance de cette question. M. Boutroux, dans une conférence faite ici même il y a deux mois, vous a montré comment elle s’était posée à des occasions toutes différentes et quelles conséquences entraînerait une réponse affirmative.

Cette réponse affirmative nous est-elle imposée par les faits que je viens de vous exposer? J’avoue que pour ma part je ne l’accepterais pas sans répugnance. Revoyons donc les faits et cherchons s’ils ne comporteraient pas une autre explication.

Il est certain que les combinaisons qui se présentent à l’esprit dans une sorte d’illumination subite après un travail inconscient un peu prolongé, sont généralement des combinaisons utiles et fécondes, qui semblent le résultat d’un premier triage. S’ensuit-il que le moi subliminal, ayant deviné par une intuition délicate que ces combinaisons pouvaient être utiles, n’a formé que celles-là, ou bien en a-t-il formé beaucoup d’autres qui étaient dépourvues d’intérêt et qui sont demeurées inconscientes?

Dans cette seconde manière de voir, toutes les combinaisons se formeraient par suite de l’automatisme du moi subliminal, mais seules, celles qui seraient intéressantes pénétreraient dans le champ de la conscience. Et cela est encore très mystérieux. Quelle est la cause qui fait que parmi les mille produits de notre activité inconsciente, il y en a qui sont appelés à franchir le seuil tandis que d’autres restent en deçà? Est-ce un simple basard qui leur confère ce privilège? Évidemment non; parmi toutes les excitations de nos sens, par exemple, les plus intenses seules retiendront notre attention, à moins que cette attention n’ait été attirée sur elles par d’autres causes. Plus généralement, les phénomènes inconscients privilégiés, ceux qui sont susceptibles de devenir conscients, ce sont ceux qui, directement ou indirectement, affectent le plus profondément notre sensibilité.

On peut s’étonner de voir invoquer la sensibilité à propos de démonstrations mathématiques qui, semble-t-il, ne peuvent intéresser que l’intelligence. Ce serait oublier le sentiment de la beauté mathématique, de l’harmonie des nombres et des formes, de l’élégance géométrique. C’est un véritable sentiment esthétique que tous les vrais mathématiciens connaissent. Et c’est bien là de la sensibilité.

Or quels sont les êtres mathématiques auxquels nous attribuons ce caractère de beauté et d’élégance et qui sont susceptibles de développer en nous une sorte d’émotion esthétique? Ce sont ceux dont les éléments sont harmonieusement disposés de façon que l’esprit puisse sans effort en embrasser l’ensemble tout en pénétrant les détails. Cette harmonie est à la fois une satisfaction pour nos besoins esthétiques et une aide pour l’esprit qu’elle soutient et qu’elle guide. Et en même temps, en mettant sous nos yeux un tout bien ordonné, elle nous fait pressentir une loi mathématique. Or, nous l’avons dit plus haut, les seuls faits mathématiques dignes de retenir notre attention et susceptibles d’être utiles, sont ceux qui peuvent nous faire connaître une loi mathématique. De sorte que nous arrivons à la conclusion suivante. Les combinaisons utiles, ce sont précisément les plus belles, je veux dire celles qui peuvent le mieux charmer cette sensibilité spéciale que tous les mathématiciens connaissent, mais que les profanes ignorent au point qu’ils sont souvent tentés d’en sourire.

Qu’arrive-t-il alors? Parmi les combinaisons en très grand nombre que le moi subliminal a aveuglément formées, presque toutes sont sans intérêt et sans utilité mais par cela même elles sont sans action sur la sensibilité esthétique; la conscience ne les connaîtra jamais; quelques-unes seulement sont harmonieuses, et par suite à la fois utiles et belles, elles seront capables d’émouvoir cette sensibilité spéciale du géomètre dont je viens de vous parler, et qui, une fois excitée, appellera sur elles notre attention, et leur donnera ainsi l’occasion de devenir conscientes.

Ce n’est là qu’une hypothèse, et cependant voici une observation qui pourrait la confirmer; quand une illumination subite envahit l’esprit du mathématicien, il arrive le plus souvent qu’elle ne le trompe pas; mais il arrive aussi quelquefois, je l’ai dit, qu’elle ne supporte pas l’épreuve d’une vérification; eh bien, on remarque presque toujours que cette idée fausse, si elle avait été juste, aurait flatté notre instinct naturel de l’élégance mathématique.

Ainsi c’est cette sensibilité esthétique spéciale, qui joue le rôle du crible délicat dont je parlais plus haut, et cela fait comprendre assez pourquoi celui qui en est dépourvu ne sera jamais un véritable inventeur.

Toutes les difficultés n’ont pas disparu cependant; le moi conscient est étroitement borné, quant au moi subliminal nous n’en connaissons pas les limites et c’est pourquoi nous ne répugnons pas trop à supposer qu’il a pu former en peu de temps plus de combinaisons diverses que la vie entière d’un être conscient ne pourrait en embrasser. Ces limites existent cependant; est-il vraisemblable qu’il puisse former toutes les combinaisons possibles dont le nombre effraierait l’imagination; cela semblerait nécessaire néanmoins, car s’il ne produit qu’une petite partie de ces combinaisons, et s’il le fait au hasard, il y aura bien peu de chances pour que la bonne, celle qu’on doit choisir, se trouve parmi elles.

Peut-être faut-il chercher l’explication dans cette période de travail conscient préliminaire qui précède toujours tout travail inconscient fructueux. Qu’on me permette une comparaison grossière. Représentons-nous les éléments futurs de nos combinaisons comme quelque chose de semblable aux atomes crochus d’Épicure. Pendant le repos complet de l’esprit, ces atomes sont immobiles, ils sont pour ainsi dire accrochés au mur: ce repos complet peut donc se prolonger indéfiniment sans que ces atomes se rencontrent, et par conséquent sans qu’aucune combinaison puisse se produire entre eux.

Au contraire pendant une période de repos apparent et de travail inconscient, quelques-uns d’entre eux sont détachés du mur et mis en mouvement. Ils sillonnent dans tous les sens l’espace, j’allais dire la pièce où ils sont enfermés comme pourrait le faire, par exemple, une nuée de moucherons, ou si vous préférez une comparaison plus savante, comme le font les molécules gazeuses dans la théorie cinétique des gaz. Leurs chocs mutuels peuvent alors produire des combinaisons nouvelles.

Quel va être le rôle du travail conscient préliminaire? C’est évidemment de mobiliser quelques-uns de ces atomes, de les décrocher du mur et de les mettre en branle. On croit qu’on n’a rien fait de bon parce qu’on a remué ces éléments de mille façons diverses pour chercher à les assembler et qu’on n’a pu trouver d’assemblage satisfaisant. Mais après cette agitation qui leur a été imposée par notre volonté, ces atomes ne rentrent pas dans leur repos primitif. Ils continuent librement leur danse.

Or notre volonté ne les a pas choisis au hasard, elle poursuivait un but parfaitement déterminé; les atomes mobilisés ne sont donc pas des atomes quelconques; ce sont ceux dont on peut raisonnablement attendre la solution cherchée. Les atomes mobilisés vont alors subir des chocs, qui les feront entrer en combinaison, soit entre eux, soit avec d’autres atomes restés immobiles et qu’ils seront venus heurter dans leur course. Je vous demande pardon encore une fois, ma comparaison est bien grossière, mais je ne sais trop comment je pourrais faire comprendre autrement ma pensée.

Quoi qu’il en soit, les seules combinaisons qui ont chance de se former, ce sont celles où l’un des éléments au moins est l’un de ces atomes librement choisis par notre volonté. Or c’est évidemment parmi elles que se trouve ce que j’appelais tout à l’heure la bonne combinaison. Peut-être y a-t-il là un moyen d’atténuer ce qu’il y avait de paradoxal dans l’hypothèse primitive.

Autre observation. Il n’arrive jamais que le travail inconscient nous fournisse tout fait le résultat d’un calcul un peu long, où l’on n’a qu’à appliquer des règles fixes. On pourrait croire que le moi subliminal, tout automatique, est particulièrement apte à ce genre de travail qui est en quelque sorte exclusivement mécanique. Il semble qu’en pensant le soir aux facteurs d’une multiplication, on pourrait espérer trouver le produit tout fait à son réveil, ou bien encore qu’un calcul algébrique, une vérification, par exemple, pourrait se faire inconsciemment. Il n’en est rien, l’observation le prouve. Tout ce qu’on peut espérer de ces inspirations, qui sont les fruits du travail inconscient, ce sont des points de départ pour de semblables calculs; quant aux calculs eux-mêmes il faut les faire dans la seconde période de travail conscient, celle qui suit l’inspiration; celle où l’on vérifie les résultats de cette inspiration et où l’on en tire les conséquences. Les règles de ces calculs sont strictes et compliquées; elles exigent la discipline, l’attention, la volonté et par suite la conscience. Dans le moi subliminal, règne, au contraire, ce que j’appellerais la liberté, si l’on pouvait donner ce nom à la simple absence de discipline et au désordre né du hasard. Seulement ce désordre même permet des accouplements inattendus.

Je ferai une dernière remarque; quand je vous ai exposé plus haut quelques observations personnelles, j’ai parlé d’une nuit d’excitation, où je travaillais comme malgré moi; les cas où il en est ainsi sont fréquents, et il n’est pas nécessaire que l’activité cérébrale anormale soit causée par un excitant physique comme dans celui que j’ai cité. Eh bien, il semble que, dans ces cas, on assiste soi-même à son propre travail inconscient, qui est devenu partiellement perceptible à la conscience surexcitée et qui n’a pas pour cela changé de nature. On se rend alors vaguement compte de ce qui distingue les deux mécanismes ou si vous voulez les méthodes de travail des deux mois. Et les observations psychologiques que j’ai pu faire ainsi me semblent confirmer dans leurs traits généraux les vues que je viens d’émettre.

Certes elles en ont bien besoin, car elles sont et restent malgré tout bien hypothétiques: l’intérêt de la question est si grand pourtant que je ne me repens pas de vous les avoir soumises.